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TABLE 1
Default parameters values.

Parameter Default value Meaning
k 6 Num. of used streams
n 25 Num. of FP locations
w 13 Clustering window size
o 2 HMM order
r 0.25 Clust. inconsistency thr.

5.2 Parameters Effect
In this section, we study the effect of changing the
system parameters on the performance of ACE. The
average distance error is used as the main metric.

We have adapted a variation of multi-entity track-
ing metric called OSPA [25] to calculate the distance
error, at any time instant t, between the sets of ground
truth locations Qt = {q1t , q2t , ..., q

g
t } and the estimated

entities’ poses Q̂t = {q̂1t , q̂2t , ..., q̂mt }. The number of
ground truth and estimated entities are g and m
respectively. For the case of g ≤ m, the metric is
defined as:

d(Qt, Q̂t) =
1

m
( min
π∈Pm

g∑
i=1

d(qit, q̂
π(i)
t )+(m−g)∗h) (11)

where Pm includes the set of permutations of length
g with elements ∈ {1, 2, ...,m}, d(qit, q̂

π(i)
t ) is the Eu-

clidean distance between qit and q̂
π(i)
t . h is a cut-off

threshold 3. In our case, q is the entity’s actual location
and q̂ is the center of her estimated location. For the
case m < g, the definition in Equation 11 becomes
d(Q̂t, Qt).

Table 1 shows the default values of the different
parameters.

5.2.1 Clustering window size (w)
Figure 11 shows the effect of changing the clustering
window size (Section 4) on accuracy. The figure shows
that choosing a too short window will degrade the
system accuracy. On the other hand, choosing a very
long window will increase the latency of the location
estimation. However, this will result in better accuracy
due to leveraging more information.

An improvement of 33% can be achieved between
w = 1 and w = 13, after which the accuracy saturates.
Therefore, an application should balance the latency-
accuracy tradeoff based on its requirements. Note that
the averaging operation performed by the clustering
module allows ACE to achieve accuracy that is finer
than the grid spacing.

5.2.2 Clustering inconsistency threshold (r)
Figure 12 shows that for small values of r, i.e. r < 0.15,
the system tends to generate one cluster, regardless
of the number of entities in the area of interest,

3. We use the length of the diagonal of the area-of-interest as the
threshold h.

Fig. 10. A heatmap highlighting the system output. Two
close entities are present on the left and another entity
is present on the right.
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Fig. 11. Effect of changing the clustering window size
(w) on accuracy.

underestimating the true number of humans. As r
approaches its maximum value, i.e. one, the system
generates a lot of clusters, overestimating the actual
number of humans. This quantifies the advantage of
the clustering module. An optimal value for r occurs
around 0.25.

5.2.3 Fingerprint density (n)

The denser the fingerprint is, the more accurate results
we can achieve (Figure 13). The curves level out as we
approach 25 fingerprint locations, which corresponds
to a density of one location every 4.56m2.

5.2.4 Number of streams (k)

Figure 14 shows that, as expected, increasing the
number of streams leads to increasing the system
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Fig. 12. Effect of changing the clustering inconsistency
threshold (r) on accuracy.
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Fig. 13. Effect of changing the fingerprint density (n)
on accuracy.

accuracy. However, due to the cross-calibration tech-
nique employed by ACE (Section 3.2), it can tolerate
a low number of streams as compared to the other
state-of-the-art DF localization systems (as quantified
in the next section).

5.2.5 HMM Order (o)

Figure 15 shows that a second order model enhances
performance over lower order models by at least 11%
in overall performance. A third order model does not
perform much better than a second order model, with
the increase in complexity. Actually, in some cases,
e.g. when one entity is present in the area of interest,
a third order model performs worse than a second
order mode due to over-training. This justifies the use
of a second order HMM.
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Fig. 14. Effect of changing the number of streams (k)
on accuracy.
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Fig. 15. Effect of changing the HMM order (o) on
accuracy.

5.3 Comparison with Other DF Systems

5.3.1 Accuracy
Figure 16 shows the CDF of distance error for the
single and multiple entities cases of ACE.

Table 2 summarizes the performance of different
techniques for the two testbeds. The results show
that ACE has the best performance under the two
testbeds with an enhancement of at least 11.81% in
median error over the best state-of-the-art techniques
and at least 8.98% in average error. In addition, it
can perform multi-entity tracking with high accuracy.
All techniques perform better in Testbed 2 due to the
closer separation of training point in Testbed 2. Note
that due to the possibility of estimating the number of
entities incorrectly, the performance of the ACE single-
entity case may not always be better than the ACE
multi-entity case.

Figure 17 also shows that ACE can estimate the
number of entities in the area of interest with at most
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TABLE 2
Performance summary for the different systems under the two testbeds. The results of ACE-Multiple entities are

the average of one, two and three entities’ results

. Number between parenthesis represent percentage of ACE-One entity advantage. c is the number of candidate locations after the
graph-cut phase in ACE and first phase of Nuzzer. c is typically << n.

Testbed 1 Testbed 2
Average Median Running Average Median Running

System error error time error error time
Running time
Complexity

Multi-entity
fingerprint
complexity

ACE-One ent. 1.72m 1.33m 1.95ms 1.59m 1.43m 1.9ms

ACE-Multi-ent. 2.56m
(48.83%)

2.11m
(58.46%)

2.56ms
(31.28%)

2.2m
(38.36%)

1.44m
(0.69%)

2.4ms
(27.3%)

O(n.m+ c3) O(n)

Spot [26] 2.81m
(63.37%)

2.54m
(90.97%)

0.435 ms
(-77.69%)

2.53m
(59.11 %)

1.75m
(32%)

0.463ms
(-75.63%)

O(n.m) O(n)

SCPL [34] 2.79m
(62.2%)

2.42m
(81.95%)

610ms
(311%)

2.42m
(52.21%)

1.61m
(12.58%)

590ms
(309%)

O(
(
n
3

)
) O(n)

Nuzzer [27] 2.85m
(65.71%)

2.77m
(108.2%)

3.53ms
(81%)

2.48m
(55.97%)

1.63m
(13.98%)

2.85ms
(49.84%)

O(n.m+ n.c) O(2n)

one difference error.

5.3.2 Running Time
Figure 18 shows the running time of the different
components of ACE compared to the other multi-
entity techniques: Spot [26] and SCPL [34]. The results
show that the overall ACE operations take less 1.9ms
per location estimate for both testbeds. The clustering
component consumes the largest time, followed by
the min-cut algorithm, and finally calculating the
probabilities.

Table 2 summarizes the running time for the differ-
ent techniques. Although SCPL [34] shows a compa-
rable performance to ACE in accuracy, it has a higher
computational complexity in the number of finger-
print locations. All remaining algorithms (including
ACE) nearly have the same complexity (as c << n).
However, the running time does differ. This is due to
the proportionality constants for the small n and m
values in our experiment.

ACE takes higher running time than SPOT (less
than 31.57% on average for both testbeds). However,
it significantly outperforms SCPL and Nuzzer, with at
least 49% enhancement on average in running time.
This highlights that ACE significant gain in accuracy
and reduction in training overhead comes at a negli-
gible increase in running time.

6 RELATED WORK

Ubiquitous and Context-Aware services are grasping
more attention these days. Location is considered a
key context information that can be utilized in many
ways. A lot of Device-based localization systems have
been proposed to provide motion detection and track-
ing of an entity carrying a device either with the use
of special hardware like accelerometers or sensors [3],
[24], or by using the existing network infrastructures
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Fig. 16. CDF of distance error for Testbed 1.
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Fig. 17. CDF of num. of entities estimation error for
Testbed 1, and a comparison with other systems.
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Fig. 18. Running time for the different components
of ACE and a comparison with other systems running
time.

like wireless networks [12], [16], [31], [41] and GSM
[2], [29]. DFP comes with the goal of bypassing the
need that the entity being localized to carry a device
or even participate actively in the localization process.
In DFP, the already installed WiFi settings in the
environment is exploited to estimate the locations of
moving objects in the area of interest.

Device-free tracking systems have been introduced
over the year including: radar-based [38], [20], [8],
camera-based [21], [15], and sensors-based [32].

In the radar-based systems, pulses of radio waves
are transmitted into the area of interest and based
on measuring the received reflections, objects could
be tracked. Several technologies have been presented
in this class including ultra-wideband (UWB) systems
[38], doppler radar [20], and MIMO radar systems [8].

Camera-based tracking systems are based on an-
alyzing a set of captured images to estimate the
current locations of objects of interest [21], [15]. The
analysis consists of two main processes: background
subtraction and temporal correspondence. However,
regular cameras can fail to work in the dark or in
the presence of smoke, and they can cause privacy
concerns.

Sensor-based systems use especially installed sen-
sor nodes to cover the area of interest. For example,
RTI technology [32], [33], [23]applies radio tomo-
graphic techniques to the readings of a dense array of
sensors to obtain accurate DF tracking. In this method,
the relationship between an entity’ location and the
RSS variation can be mathematically modeled. [32]
proposed a linear model to capture the attenuation
of RSS values caused by entities when the Line-of-
Sight is blocked. In [9], it is shown that the accuracy
of RTI can be consistently improved by using channel
diversity. Another technique was presented in [10] to
provide a real-time RTI-based localization with online

re-calibration.
All the technologies above share the requirement

of installing special hardware to be able to perform
DF tracking, which reduces their scalability in terms
of cost and coverage area. In contrast, WLAN DF
tracking tries to avoid the previous drawbacks by
exploiting the already installed WLANs.

WLAN DF localization was first introduced in [40]
along with feasibility experiments in a controlled
environment. Several papers followed the initial vi-
sion to provide different techniques for detection and
tracking [22], [37], [14], [28], [26]. However, all these
techniques focus on the problem of a single entity.

The closest systems to ours are Spot [26] and SCPL
[34], [35]. Spot focuses only on the spatial constraints
and does not handle the problem of overestimating
the number of entities. In addition, SCPL focuses
only the temporal transitions in human trajectories
and models them as a state transition process. SCPL
also uses traditional fingerprinting of a single-entity
for counting and localizing multiple entities. ACE
innovates in the area of multi-entity DF tracking
problem by combining temporal an spatial constraints
in a unified framework, using a nivel cross-calibration
technique, handling RSS and streams outliers, as well
as handling the overestimation of the number of
entities. Table 3 shows how ACE compares to the
different systems.

7 DISCUSSION

7.1 Dynamic Changes in the Environment

An important aspect of the practical deployment of
DF localization techniques is handling the dynamic
changes in the environment. ACE currently needs
manual re-calibration of the area-of-interest, which
can be cumbersome and costly. To reduce this effort,
different approaches can be used to capture these dy-
namic changes including automatic radio map genera-
tion using CAD tools, e.g. [6]; leveraging cameras as in
[36]; and dynamically updating the stored parameters,
e.g. using anomaly detection techniques as in [14].
Other approaches were applied in the context of real-
time DF localization to reduce the calibration , e.g.
[10].

7.2 Impact of Multiple Entities on RSS Values

The effect of multiple entities on the RSS attenua-
tion is challenging because of the multi-path effect.
Briefly, multi-path can cause nonlinear interference
when multiple entities coexist in the same radio space.
In addition, the RSS changes even when the entity
is several meters away from the LoS link. Similar
challenges have been addressed previously in envi-
ronments with dense sensors, e.g. [32], [34] and can
be used with ACE.
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TABLE 3
Comparison of different RF-based DF localization systems.

MIMO Radar- Radio Tomographic Nuzzer ACE
based Systems Imaging (RTI) System System

Special hardware required Yes Yes No No
Number of special nodes Few Many None None
Number of streams N/A (echo based) Large (756) Small (6) Small (6)
Covering large areas Limited by its short Limited by the number of Yes Yes

range (high frequency) deployed nodes (LOS)
Computational Complexity Low High Moderate Low
Accuracy Very High Very High Moderate High
Affected by muli-path effect Limited Yes Limited (F.print) Limited (F.print)
Multi-entity tracking Yes Yes No Yes
Multi-entity overhead Low Low Intractable Moderate (F.print)

7.3 New Crowd-based Applications
Traditional application scenarios for DF localization
systems typically assume that the area of interest is
silent (i.e. has no activities and no entities). In our
experiments, RSS readings have been acquired when
there were people moving in the same floor where
ACE was deployed, but not in the experiment area.
We believe, however, that when the crowds are close
to each other in the area of interest, they could form
a big high likelihood area in the reconstructed fin-
gerprint map. When the crowds are scattered, their
shadowing effects on streams will be different and
they could form lots of high likelihood areas in
the reconstructed fingerprint map. The reconstructed
fingerprint map could represent the distribution of
the crowd. This can enable a new set of device-free
applications, including indoor analytics and crowd
management.

8 CONCLUSIONS

We presented the design, analysis, and implementa-
tion of ACE: a system for accurate and efficient multi-
entity device-free WLAN localization. ACE leverages
probabilistic techniques to provide a smooth and con-
sistent environment image. It uses a cross-calibration
technique and an energy-minimization framework
to reduce the calibration overheard to linear in the
number of locations, which turns the DF multi-entity
tracking to a tractable problem. We showed that the
selected energy-minimization terms lead to an effi-
cient solution by mapping the energy function to a
binary graph-cut problem. We further showed how
to perform clustering on the generated environment
map to remove outliers and enhance accuracy.

Implementation on standard WiFi hardware in two
different testbeds show that ACE can achieve 1.3m
median distance multi-entity tracking error, which is
better than the stat-of-art techniques by at least 11.8%,
and up to 33%, in both testbeds. In addition, it can
estimate the number of entities correctly to within one
entity difference 100% of the time. This highlights the
promise of ACE for a wide range of multi-entity DF
tracking applications.

Currently, we are expanding ACE in multiple direc-
tions including robustness to environment changes,
entity identification, and automating the construction
of the fingerprint.
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